
Sharing Trees and Contextual Information:

Re-imagining Forwarding in Attribute Grammars

Lucas Kramer
krame505@umn.edu

University of Minnesota
USA

Eric Van Wyk
evw@umn.edu

University of Minnesota
USA

Abstract

It is not uncommon to design a programming language as
a core language with additional features that define some
semantic analyses, but delegate others to their translation
to the core. Many analyses require contextual information,
such as a typing environment. When this is the same for
a term under a new feature and under that feature’s core
translation, then the term (and computations over it) can be
shared, with context provided by the translation. This avoids
redundant, and sometimes exponential computations. This
paper brings sharing of terms and specification of context to
forwarding, a language extensibility mechanism in attribute
grammars. Here context is defined by equations for inher-
ited attributes that provide (the same) values to shared trees.
Applying these techniques to the ableC extensible C com-
piler replaced around 80% of the cases in which tree sharing
was achieved by a crude mechanism that prevented sharing
context specifications and limited language extensibility. It
also replaced all cases in which this mechanism was used to
avoid exponential computations and allowed the removal of
many, now unneeded, inherited attribute equations.

CCS Concepts: • Software and its engineering → Trans-

lator writing systems and compiler generators.

Keywords: compilers, attribute grammars, modular and ex-
tensible languages, static analysis, well-definedness
ACM Reference Format:

Lucas Kramer and Eric Van Wyk. 2023. Sharing Trees and Con-
textual Information: Re-imagining Forwarding in Attribute Gram-
mars. In Proceedings of the 16th ACM SIGPLAN International Con-
ference on Software Language Engineering (SLE ’23), October 23–
24, 2023, Cascais, Portugal. ACM, New York, NY, USA, 14 pages.
https://doi.org/10.1145/3623476.3623520

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
SLE ’23, October 23–24, 2023, Cascais, Portugal
© 2023 Copyright held by the owner/author(s). Publication rights licensed
to ACM.
ACM ISBN 979-8-4007-0396-6/23/10. . . $15.00
https://doi.org/10.1145/3623476.3623520

1 for i in 0 to f(x) { g(i); }

1 { var i : int = 0;

2 var _v0 : int = f(x);

3 while i < _v0 { g(i); i := i + 1; } }

Figure 1. A for-loop example (top), introduced as a feature
that translates to the code with a while-loop (bottom).

1 Introduction

Defining all semantic analyses, optimizations, and transla-
tions for all constructs in a full-featured programming lan-
guages can be a daunting task. One way to address this is
to design the implementation with a smaller core language
containing some collection of the essential language con-
structs and semantic analyses. Additional features are then
layered on top of this core and provide a translation of the
new feature into the core language, e.g. a for-loop with inte-
ger bounds may translate down to a while-loop in the core,
as shown in Figure 1. This alleviates the need to specify cer-
tain semantic analyses or tasks, such as code generation, on
non-core features by delegating them to the translation.

While other tasks, such as type checking, can also be del-
egated to the translation, this leads to reporting error mes-
sages on generated code instead of the code written by the
programmer. If, e.g. the expression f(x) for the upper-bound
on the for-loop in Figure 1 is not of type integer then an error
about a type-mismatch on a variable declaration (line 2) may
be reported and be nonsensical to the programmer. Thus, it
is helpful to explicitly manage some aspects of compilation,
such as type checking and error reporting, but dispatch other
tasks, such as code generation, to the translation. Note that
this requires managing the contextual information needed
by sub-terms by passing this information down the syntax
tree, e.g. an environment mapping variables to their types.
In doing so, the language indicates that some semantic as-
pects of the non-core feature are equivalent to those of its
translation but that some are not.

Not only does designing languages in this way save effort,
it also leads to a more modular development as work on the
core language (once it is established) can be isolated from
work on non-core features and be carried out by different
language developers. With proper tool support, modular

56

https://orcid.org/0000-0001-6719-6894
https://orcid.org/0000-0002-5611-8687
https://doi.org/10.1145/3623476.3623520
https://doi.org/10.1145/3623476.3623520


SLE ’23, October 23–24, 2023, Cascais, Portugal Kramer and Van Wyk

...

forLoop

env errs, asm

forLoop

env1 errs1

𝑠

env2 errs2

env

asm

forLoop

env′1 asm1

𝑠

env′1

asm1

𝑠

env′2 asm2

𝑠

Figure 2. A portion of the decorated tree resulting from
for ... in ... { for ... in ... { s }}. For clarity, the
loop variable and bounds are not shown.

design can enable a particular form of extensible languages
in which new, often domain-specific, language constructs
and static analyses can be developed independently, and
composed together to form a language for problems that
involve multiple domains. ExtendJ [3] and SugarJ [5] allow
new features to be added to Java, andXOC [2] and ableC [11]
allow new features to be added to C in a modular way.
Figure 2 shows aspects of the syntax trees created in er-

ror checking and code generation of the for-loop example
in Figure 1; it also illustrates a potential problem with this
approach. For two nested for-loops, the original tree with
body 𝑠 is shown on the left (the loop variables and bounds
are not shown). The propagation of a typing environment for
error checking (errs) is indicated by env that is propagated
along those edges. The squiggly edges facing right indicate
the translation of the loops, with the clouds representing the
while-loop code containing 𝑠 . Note that the translation of the
outer for-loop includes the inner for-loop, an approach used
in the forwarding technique [26] used in ableC to handle
independent language extensions. This avoids inappropri-
ately translating-away constructs from other independent
extensions. The assembly language translation process to
construct asm (which may also depend on types and thus
env) is dispatched from the for-loops to their translations
and this process takes place on right-most trees, the ones
whose nodes have an env propagated down (or over) to them.
This will provide two copies of 𝑠 with an environment, but
the middle two instances of 𝑠 would not be constructed nor
visited in these two compiler tasks.

In some cases, this incremental translationmay even result
in an exponential number of trees to traverse. This can hap-
pen in some instances of type-based operator overloading, in
which the type of the result of an overloaded construct is not
determined explicitly, but is instead computed on the over-
loaded construct’s translation, through forwarding. Consider
an overloaded negation operator ~ and the type-checking
of the expression ~ (~ (~ e)). Following this pattern, type

...

neg

env type

neg’

env

type

neg neg’ neg neg’

neg neg’ neg neg’ neg neg’ neg neg’

𝑒 𝑒 𝑒 𝑒 𝑒 𝑒 𝑒 𝑒

Figure 3. The resolution of operator overloading on a unary
negation expression ~ (~ (~ e)) resulting in an exponential
number of trees being created and traversedwhen computing
type. neg' is the specialized implementation of neg for the
type of 𝑒 . Some labels are omitted for clarity.

checking results in creating and traversing an exponential
number of trees, 8 in this case, as illustrated in Figure 3. The
overloaded ~ operator, represented as neg, will type-check
its sub-expression since that type is used to determine the
translation, the neg' nodes in Figure 3. The type of a neg

expression is determined by its neg' translation and thus
we need to type check 𝑒 under both operators. An enclos-
ing (middle) neg expression queries its child to determine
its translation and that translation will do the same. The re-
sults in type checking 𝑒 4 times. Another enclosing negation
operator repeats the process and then 𝑒 is checked 8 times,
an exponential growth in the number of trees created and
traversed results. In fact, this phenomenon can also occur
with seemingly predictable constructs like the for-loop when,
e.g. another extension uses both errs and asm results from a
child for-loop to compute asm.
A second problem faced in specifying language features

in this manner is the need to explicitly manage the flow
of contextual information down to the components of the
new language feature. In some cases this can be difficult, in
others only tedious. In Figure 2, a forLoop construct extends
its incoming environment 𝑒𝑛𝑣 to include the declaration
of the loop variable. This extended environment is passed
as 𝑒𝑛𝑣1 to the nested loop, which does the same to pass
𝑒𝑛𝑣2 for the body s. It is important to make sure that the
environments supplied by a production are the same as, or at
least compatible, with those determined on the translation.
Here, this entails ensuring that 𝑒𝑛𝑣1 (or 𝑒𝑛𝑣2) is compatible
with 𝑒𝑛𝑣 ′1 (or 𝑒𝑛𝑣

′
2) as determined on the translation. As we

will see, this is straightforward for a forLoop, but in the more
sophisticated language extensions found in ableC this can
be more difficult.
A solution to both of these problems is for component

trees to be shared by the non-core feature and its translation.
This is depicted on the left in Figure 4, in which the loop

57



Sharing Trees and Contextual Information: Re-imagining Forwarding in Attribute Grammars SLE ’23, October 23–24, 2023, Cascais, Portugal

...

forLoop

env errs, asm

forLoop

errs1

𝑠

errs2

env

asm

env1 asm1

env1

asm1

env2 asm2

...

neg

envtype

neg’

neg neg’

neg neg’

𝑒

Figure 4. Alternative versions of the trees in Figure 2 and
Figure 3 in which decorated children are shared between the
forwarding and the forwarded-to trees.

body 𝑠 exists only once and the env context is specified by
the translation. (The lower and upper bounds of the for-loop
are shared in a similar way.) Thus, the for-loop construct
can still access type information on those expressions and
generate appropriate error messages when those expressions
do not have an integer type. Tree sharing also eliminates
the exponential number of trees in the negation example, as
seen on the right in Figure 4. The ableC system frequently
uses a crude approach to sharing that avoids this duplication
of trees but limits the extensibility of the language feature,
the primary goal of ableC.
In addition to these concerns, there are also instances

when a new language construct needs to supply contextual
information to its components that differs from that supplied
by the translation. For example, a pretty-printing task may
provide an indentation level to its sub-terms and this value
would differ for the loop body under these two constructs.
If for a language feature the translation is not “macro-like”
(as in the for-loop example) but instead must be computed
from semantic information, such as the types of sub-terms,
then these explicit contextual specifications are required.
Additionally, there are situation in which sharing of sub-
components may not be feasible and two versions of the
tree are needed. For example in translating “repeat 𝑏𝑜𝑑𝑦

until 𝑐𝑜𝑛𝑑” to “𝑏𝑜𝑑𝑦 ; while (not 𝑐𝑜𝑛𝑑) do 𝑏𝑜𝑑𝑦” the 𝑏𝑜𝑑𝑦
tree cannot be shared in both places; some attribute (e.g. a
data-flow analysis) may need to have different values for
each instance of 𝑏𝑜𝑑𝑦.

This paper examines this problem and poses solutions in
the context of attribute grammars (AGs) with forwarding [26]
— a technique that constructs translations and automatically
copies contextual information to the translation. Computed
semantic information on the translation is automatically

copied back to the original construct, when it is not over-
ridden (e.g. error messages) by an explicit definition on the
“forwarding” construct.

The primary contribution of the paper is a newmechanism
for sharing trees and their attribution under a new (forward-
ing) construct and its translation (forwarded-to) construct.
In attribute grammars, a production defines synthesized at-
tributes for the left-hand side nonterminal and inherited
attributes for the right-hand side nonterminals. Forwarding
provides default/implicit equations for synthesized attributes.
We extend this so that for shared trees, forwarding can now
do the “other half” of this work and now provide default-
/implicit equations for inherited attributes for right-hand
nonterminals too. Critically, this mechanism does not limit
the extensibility of the language like the crude mechanism
currently used in ableC. This is discussed in Section 3 af-
ter Section 2 continues the discussion of the shortcomings
of the existing approach to forwarding. Section 3 also in-
troduces translation attributes, a means for sharing context
when translation trees are constructed over a number of
productions in a higher-order attribute.

Section 4 validates the techniques by implementing them
in the Silver [25] attribute grammar system and applying
them in the large ableC specification and several extensions
to it, finding that around 80% of the uses of the crude non-
extensible technique (and all exponential cases) could be
replaced by the new extensible approach.1
Section 5 describes how the modular well-definedness

analysis [12] can be extended to handle this new feature
to ensure that there will be no missing or duplicate equa-
tions in an attribute grammar composed from independently-
developed language extensions. It also discusses challenges
in ensuring non-circularity with this approach.
We discuss limitations of this approach, and alternatives

to it, in Section 6 before discussing related in Section 7 and
future work and concluding in Section 8.

2 Background

In this section we provide background on attribute gram-
mars, forwarding [26], its use in extensible languages, its
limitations, and its realization in the Silver AG system [25].
Background on the modular well-definedness analysis [9, 12]
and its extension in this paper is discussed in Section 5.

2.1 Attribute grammars and Silver

Attribute grammars are a declarative formalism for specify-
ing the semantics of context-free languages [15, 16] and can
be formally defined as a four-tuple ⟨𝐺 = ⟨𝑁𝑇,𝑇 , 𝑃⟩, 𝐴,𝑂, 𝐸⟩
where𝐺 is a context free grammar with nonterminal sym-
bols 𝑁𝑇 , terminal symbols 𝑇 , and production rules 𝑃 . 𝐴 is
a set of synthesized (𝐴𝑆 ) and inherited (𝐴𝐼 , 𝐴 = 𝐴𝑆 ∪ 𝐴𝐼 )

1Silver, ableC, extensions and other examples are available at https://melt.
cs.umn.edu and archived at https://doi.org/10.13020/badh-qf44.

58

https://melt.cs.umn.edu
https://melt.cs.umn.edu
https://doi.org/10.13020/badh-qf44


SLE ’23, October 23–24, 2023, Cascais, Portugal Kramer and Van Wyk

attributes that may decorate nodes of trees in the language
of 𝐺 , and 𝑂 is a mapping of which attributes in 𝐴 occur on
which nonterminal symbols in 𝑁𝑇 . 𝐸 is the set of equations
on productions, that define the values of attributes on trees.

Since AGs process abstract syntax, as opposed to specify-
ing concrete syntax, a grammar 𝐺 supports a wider variety
of types for tree nodes than simply nonterminal and termi-
nal symbols. Thus, productions in 𝑃 have a signature of the
form 𝑥0 :: 𝑁𝑇0 ::= 𝑥1 :: 𝑉1 ...𝑥𝑛 :: 𝑉𝑛 , with 𝑛 ≥ 0 in which 𝑉
includes 𝑁𝑇 , 𝑇 , primitive types such as integers, and others.
These signature items are labeled with names so that nodes
in a syntax tree can be referred to by these labels instead of
their position in the production.
Attribute grammars have been extended in a wide vari-

ety of ways since their introduction to better support the
specification of tasks common in language implementation.
For example, higher-order attributes [29] hold tree values
that are passed to new locations in the syntax tree where
they are then provided with inherited attribute (that is, dec-
orated) so that synthesized attributes can be computed on
them. Another commonly used extension is reference [7] or
remote [1] attributes. These can be seen as pointers, or refer-
ences, to the root node of remote decorated trees somewhere
in the syntax tree from which attributes can be accessed.

In Silver decorated trees in reference attributes are known
to have been provided with a set of inherited attributes called
a reference set. When decorated tree types are written as
Decorated 𝑁𝑇 this set is, by default, the inherited attributes
occurring on 𝑁𝑇 that were declared in the same grammar
module as 𝑁𝑇 . The reference set can be given explicitly to
override this default; e.g. Decorated Expr with {env} iden-
tifies the environment attribute env as sole attribute in the
reference set for this type of decorated expression.

Figure 5 show an implementation of the for-loop construct
as seen in Figure 1 in the Silver AG system. Declarations
of attributes, and their occurrences, are not shown but can
be inferred from the forLoop production. This production
computes a synthesized errors attribute on the left-hand
side s, defines the inherited environment attribute env on the
three child trees, computes a local fresh variable upperVar.
This is used in the construction of the while-loop trans-
lation, seen in Figure 1, that the for-loop will forward to.
The productions decl for declaring and initializing variables,
seq for statement sequencing, etc. should be clear from the
example in Figure 1. The forLoop production takes (undeco-
rated) terms of type Expr and Stmt in constructing the syn-
tax tree. In the body of the production (in the curly-braces)
these labeled terms are decorated by inherited attribute equa-
tions, e.g. lines 7–9, and thus the labels refer to trees of type
Decorated Expr and Decorated Stmt. Similarly, local tree-
valued production attributes can also be declared and defined
as an undecorated nonterminal type (e.g. Expr) and decorated
using inherited attribute equations in a production body to
be typed as decorated (e.g. Decorated Expr).

1 production forLoop s::Stmt ::=

2 iVar::String lower::Expr upper::Expr body::Stmt

3 { s.errors =

4 checkInt(lower.type, "loop lower bound") ++

5 checkInt(upper.type, "loop upper bound") ++

6 lower.errors ++ upper.errors ++ body.errors;

7 lower.env = s.env;

8 upper.env = s.env;

9 body.env = addEnv(iVar, intType(), s.env);

10 local upperVar::String = freshName(s.env);

11 forwards to block(seq(

12 decl(iVar, intType(), new(lower)),

13 seq(decl(upperVar, intType(), new(upper)),

14 while(intLt(var(iVar), var(upperVar)),

15 seq(new(body), assign(iVar,

16 intAdd(var(iVar), intConst(1))))))));

17 }

Figure 5. A forLoop implementation. The children are ex-
plicitly decorated with the environment to support error
checking, and are decorated again in the forwarded to tree.

2.2 Forwarding and extensible languages

Forwarding is a technique developed to support the modular
definition of languages [26] and has been used extensively in
the ableC extensible C compiler and a wide variety of com-
posable extensions to it [10, 11]. Any queries for synthesized
attributes on the production’s left-hand side nonterminal
that are not explicitly defined by equations are “forwarded”
to the forwards to tree to be answered there. Likewise, any
queries for inherited attributes on the forwarded-to tree are
passed back to production’s left hand side and their values
are retrieved from there. In Figure 5, s defines a value for the
errors attribute using the function checkInt that reports a
message when a type is not an integer. This takes precedence
over the value for errors on the while-loop construct, thus
providing proper error messages that reference the code writ-
ten by the programmer, not the code to which it translates. A
query to s for an assembly language translation asm attribute
would automatically and implicitly copy the value from of
asm from the forwards-to tree back to s. Any queries of an
inherited env attribute on the outermost block construct in
the forwards-to tree would get is value from the env attribute
passed down to the left-hand side symbol s.
Forwarding supports the automatic composition of inde-

pendent extension specifications. If another extension de-
fines, e.g. a new translation to Web Assembly in a wasm at-
tribute, then all computations involved in that effort take
place on the forwards to tree and automatically provide a
value for wasm for s, even though the author of the forLoop
extension knew nothing of this Web Assembly extension.

59



Sharing Trees and Contextual Information: Re-imagining Forwarding in Attribute Grammars SLE ’23, October 23–24, 2023, Cascais, Portugal

1 production neg e::Expr ::= n::Expr

2 { n.env = e.env;

3 forwards to case n.type of

4 | intType() -> intNeg ( new(n) )

5 | boolType() -> boolNeg ( new(n) )

6 | _ -> errorExpr ("incorrect types")

7 end; }

1 production decExpr

2 e::Expr ::= de::Decorated Expr with {env}

3 { e.type = de.type;

4 e.errors = de.errors; }

5
6 production neg e::Expr ::= n::Expr

7 { n.env = e.env;

8 forwards to case n.type of

9 | intType() -> intNeg ( decExpr(n) )

10 | boolType() -> boolNeg ( decExpr(n) )

11 | _ -> errorExpr ("incorrect types")

12 end; }

Figure 6. The exponential neg production (top) and the effi-
cient but crude “decExpr” hack (bottom).

2.3 Limitations of forwarding

While forwarding provides implicit attribute definitions for
synthesized attributes for a production’s left-hand side sym-
bol, it provides no support for the “other half” of what equa-
tions associated with a production do: provide values of
inherited attributes to the child trees. This is shown in Fig-
ure 5 where equations for env are required for child trees
since their synthesized attribute errors (whose computation
depends on an environment) is demanded on line 6. An im-
portant consideration when overriding errors on forLoop is
that any problems in the forward tree should still be reflected
in the new errors equation. To ensure this, the environment
given to lower, upper and bodymust match the environment
computed through the equations of the productions enclos-
ing these children in the forward tree; e.g. body must receive
an env containing iVar bound to the appropriate type. This
requires extension developers to familiarize themselves with
host language details in order to write the appropriate equa-
tions. Doing so may be especially burdensome in a more
sophisticated host language where the inherited dependen-
cies of errors could be more than just env.
Performance is another concern; see the duplication of

for-loop (Figure 2) and negation trees (Figure 3). In the spec-
ification of the forwards-to tree for a for-loop in Figure 5 the
child trees lower, upper, and body must be replicated (using
new) This “undecorates” these trees, retrieving the origi-
nal terms prior to decoration, and re-decorates them with

...

neg

env type

neg’

decExpr

neg neg’

decExpr

neg neg’

decExpr

𝑒

Figure 7. The efficient
but non-extensible im-
plementation of over-
loaded negation from
the bottom of Figure 6.

new attribute values under the
forwards-to tree. For the for-
loop in Figure 2 this is not so
expensive, but it is a significant
problem with the negation op-
erator in Figure 3. The specifi-
cation of the overloaded nega-
tion operator is given at the top
of Figure 6. It queries its child
term’s type (n.type) to deter-
mine which type-specific nega-
tion production to forward to.
Since there is no explicit equa-
tion for e.type that value is de-
termined on (and copied from)
the forward tree, resulting in
the duplication in Figure 3.

The specifications at the bot-
tom of Figure 6 demonstrate
the crude “decExpr” hack that
avoids the exponential duplica-
tion of trees. The decExpr pro-
duction wraps up a Decorated

expression tree that has been al-
ready provided with its env attribute (written with {env}),
thus allowing the evaluation of the type and errors attribute
on de. This production is used to wrap up the decorated child
n in the optimized neg production instead of using new. This
results in the tree shown in Figure 7 in which each negation
child is shared between the original and forwarded-to trees.
While this is efficient, it severely limits the extensibility

of the language. Recall the extension adding equations for
a synthesized wasm attribute to host language productions.
It would define wasm on intNeg and boolNeg but any new
inherited attributes needed for this computation will not be
propagated down past the decExpr node. The needed inher-
ited attribute equations cannot be added to the host-language
decExpr production since they would have no effect — its
child is a reference to a tree that was decorated elsewhere,
and inherited attribute equations are not permitted here.
This technique is used frequently in the ableC specification
and, while efficient, limits the kinds of language features that
can be developed as composable language extensions.

3 Forwarding with Tree Sharing

Here we describe a new “tree-sharing” operator @ that al-
lows trees, and the specification of inherited attributes, to be
shared between a forwarding and a forwarded-to tree, thus
avoiding the duplication and redecoration seen in Figure 2
and Figure 3 and instead producing shared trees like those in
Figure 4. We also describe different scenarios in which this
can be used.

60



SLE ’23, October 23–24, 2023, Cascais, Portugal Kramer and Van Wyk

1 production forLoop s::Stmt ::=

2 iVar::String lower::Expr upper::Expr body::Stmt

3 { s.errors =

4 checkInt(lower.type, "lower bound") ++

5 checkInt(upper.type, "upper bound") ++

6 lower.errors ++ upper.errors ++ body.errors;

7 local upperVar::String = freshName(s.env);

8 forwards to block(seq(

9 decl(iVar, intType(), @lower),

10 seq(decl(upperVar, intType(), @upper),

11 while(intLt(var(iVar), var(upperVar)),

12 seq(@body, assign(iVar,

13 intAdd(var(iVar), intConst(1)))))))); }

Figure 8.An alternative version of Figure 5 inwhich children
are shared with the forward tree, avoiding the need to specify
inherited env equations.

3.1 Sharing with a static forward tree

In order to achieve the pattern of sharing seen in Figure 4,
we introduce the tree-sharing operator @, which takes a dec-
orated tree and wraps it as an undecorated term. Decorating
this term simply yields the original tree, updated with any
newly-supplied attributes added; thus the syntax @a can be
read as “a gets decorated with more attributes here.” This op-
erator can be seen as a improved, built-in version of decExpr
and similar "wrapper productions", except that there is no in-
termediate node for @ in the decorated tree, like the decExpr
one seen in Figure 7. The tree-sharing operator can be used
in specifying the forward for the forLoop production, as seen
in Figure 8. With the nested forLoop scenario, this gives rise
to the tree in Figure 4 instead of Figure 2; now the innermost
statement 𝑠 is only decorated once.
When a shared child or local appears beneath statically

specified productions in the forward tree, inherited attributes
supplied to the child/local by these productions can be uti-
lized in the original forwarding production. This effectively
permits child inherited attributes to be implicitly computed
through forwarding. For example on lines 4–6 of Figure 8,
type and errors can be accessed on the children without
supplying explicit equations for env since, as seen on the left
in Figure 4, env is defined for those trees by the forward tree.
Silver uses a demand-driven approach to attribute eval-

uation [8], which now presents some complications. Tradi-
tionally, one knows what equations will be used to compute
inherited attributes on a tree before any attributes are evalu-
ated. This is now no longer the case, as inherited attributes
supplied to a child shared in a forward tree are only de-
fined when the portion of the forward tree containing the
child is demanded. For example in Figure 8, the equation for

1 production neg e::Expr ::= n::Expr

2 { n.env = e.env;

3 forwards to case n.type of

4 | intType() -> intNeg ( @n )

5 | boolType() -> boolNeg ( @n )

6 | _ -> errorExpr ("incorrect types") end; }

Figure 9. An implementation of operator overloading, in
which the forward tree is determined based on the operand
types. Computing these types requires supplying the envi-
ronment to the operands.

s.errors does not directly depend on forwarding; demand-
ing lower.errors seemingly would not cause the forward
tree to be created and decorated, which would lead to a
missing equation for env on lower.
To avoid this, any use of the original child tree must de-

mand the corresponding portion of the forward tree. This
is conceptually like pattern matching on the forward tree,
with a pattern that mirrors the term containing the child. For
example, the access of lower.errors could be translated as

1 case forward of

2 | block(seq(decl(_, _, lower))) -> lower.errors

3 end

In reality, this can be implemented more efficiently than pat-
tern matching, as the forward tree is known to have been
built with these constructors and we do not need to check
that it has the expected shape. Note that this problem would
not exist if a similar approach of decoration through a shared
tree was used in an ordered attribute grammar [14]; an at-
tribute supplied through sharing (like env) could be fully
computed before being used on the shared tree by another
attribute (like errors.)

In prior versions of Silver, children and locals could be ref-
erenced with an undecorated type, implicitly un-decorating
trees in these cases. For example, the calls to new on lines 4–6
of Figure 5 could have been omitted. We now recognize this
to be a language design flaw, as children can be inadvertently
un-decorated, and included in the forward tree to be deco-
rated again, without any indication of a potential problem.
To address this, we simplify the type semantics of Silver so
that any reference to a child or local tree gives a decorated
type. This requires one to explicitly write new or @ when
incorporating a sub-tree that has previously been decorated
into a new term.

3.2 Dynamic forwarding

Sometimes, a child may appear in the forward tree un-
der different productions, depending on the result of some
analysis. This is the case for the negation operator from
Figure 6, where n.type is computed to determine the target

61



Sharing Trees and Contextual Information: Re-imagining Forwarding in Attribute Grammars SLE ’23, October 23–24, 2023, Cascais, Portugal

1 production neg e::Expr ::= n::Expr

2 { local nVar::String = freshName(e.env);

3 local impl::Expr = case n.type of

4 | intType() -> intNeg ( var(nVar) )

5 | boolType() -> boolNeg ( var(nVar) )

6 | _ -> errorExpr ("incorrect types") end;

7 forwards to let_(nVar, @n, @impl); }

Figure 10. An alternate version of Figure 9, in which the
portion of the forward tree containing the child n is static.

production. Computing type on an expression depends on
env, which must be supplied to n; to avoid a circularity, this
must be done with an explicit equation rather than through
forwarding.
However, one would still wish to share n in the forward

tree, to avoid the exponential explosion seen in Figure 3;
this can be done using the tree sharing operator as seen in
Figure 9. For this to be possible, the writer of a forwarding
production such as negmust ensure that the values of any ex-
plicit inherited equations on a shared child match the values
that would otherwise be supplied through forwarding.

3.3 Partially dynamic forwarding

Often, an intermediate approach between static and dy-
namic forwarding is possible: children can be shared (and
receive attributes) beneath a static portion of the forward
tree, while other portions of the forward tree are computed
dynamically. For example in Figure 10, the operand to neg can
be bound to a fresh temporary variable in a let-expression.
The implementation, dynamically determined from the type
of n, can then refer to the variable instead of using n directly.
Lazy evaluation means that the portion of the forward tree
containing n can be decorated with env to compute type,
before impl is computed. Note that impl is also marked as
being shared, since it is a local that gets decorated implicitly.
Note that without care this approach can give rise to cir-

cularities, between computing an analysis on a child that is
needed to determine part of the forward, and decorating the
forward tree to determine inherited attributes on the child.
To avoid this one must sometimes supply some inherited
equations explicitly, which take precedence over equations
supplied in the forward tree.
For example, the ableC-closure extension [10] intro-

duces lambda functions, e.g. lambda (int x) -> x + y, where
free variables such as y referenced in the body can be cap-
tured. To implement this, a lambda function is implemented
as a function pointer, paired with a struct containing the val-
ues of captured variables. Thus, the above lambda expression
would forward to a function pointer to the following func-
tion that is lifted to the global scope along with the following
struct declaration:

1 var res : bool = table { b1 && b3 : T F

2 ~ b2 : T *

3 b2 || b3 : F T };

1 var res : bool =

2 let _v0 : bool = b1 && b3 in

3 let _v1 : bool = ~b2 in

4 let _v2 : bool = b2 || b3 in

5 (_v0 && _v1 && ~_v2) || (~_v0 && _v2);

Figure 11. A simple language extension for condition tables
(top), provides an alternate concise notation for complex
boolean expressions (bottom)

1 struct _lam_env_19 { int y; };

2 int _lam_fn_19(struct _lam_env_19 _env, int x) {

3 const int y = _env.y;

4 return x + y; }

The free variables from the body to be captured are com-
puted as a synthesized attribute freeVariables, which on
expressions depends on env. However, the env given to the
body in the forward of the lambda production depends on
the variable definitions (e.g. line 3 in the above) generated
from the free variables. This circularity can be avoided by
the lambda production supplying an explicit env equation
to its body expression. For correctness, this equation must
match the env supplied through forwarding, in this case by
making all captured variables constant.

3.4 Computing a forward over multiple productions

Sometimes, an extension may introduce its own nonter-
minals to provide richer syntax, and the computation of the
translation it will forward to is spread across the productions
for these new nonterminal symbols. For example, the condi-
tion tables extension, seen at the top of Figure 11, provides
convenient syntax for writing complex Boolean expressions.
A condition table expression is true if there is a columnwhere
the expression is true for every row with a T, and is false for
every row with an F, while * indicates that we don’t care if
that expression is true or false. This expression translates
to the code seen in the bottom of Figure 11, creating a let-
binding for every expression, with the conditions translated
into conjunctive normal form as the body.

A portion of the implementation of this extension is seen
in Figure 12. Table rows are represented by the TRows nonter-
minal (line 7), with an inherited attribute conds to construct
the needed Boolean result expression. We require in the syn-
tax of the extension that the table has at least one row, such
that rs.conds is non-empty in nilRow. On line 16, the trans
attribute then wraps the result in the needed let bindings for
the row expressions.

62



SLE ’23, October 23–24, 2023, Cascais, Portugal Kramer and Van Wyk

1 production condTable e::Expr ::= rows::TRows

2 { e.errors = rows.errors;

3 rows.conds = [];

4 forwards to @rows.trans; }

5 inherited attribute conds::[Expr];

6 translation attribute trans::Expr;

7 nonterminal TRows with errors, conds, trans;

8 production consRow rs::TRows ::=

9 e::Expr tf::TruthFlags rest::TRows

10 { rs.errors = e.errors ++ tf.errors ++ rest.errors

11 ++ checkBoolean(e.type, "row expression");

12 local eVar::String = freshName(rs.trans.env);

13 tf.rowExpr = var(eVar);

14 rest.conds = if null(rs.conds) then tf.rowConds

15 else zipWith(andOp, rs.conds, tf.rowConds);

16 rs.trans = let_(eVar, @e, @rest.trans);

17 }

18 production nilRow rs::TRows ::=

19 { rs.errors = [];

20 rs.trans = foldr1(orOp, rs.conds); }

Figure 12. A portion of the implementation of condition ta-
bles, computing a forward tree containing children decorated
across multiple productions using a translation attribute.

...

condTable

enverrors, asm

consRow

trans, errors

𝑒1

errors′1

consRow

trans1, errors1

𝑒2

errors′2

nilRow

trans2, errors2

let
env

asm

env1 asm1

let

env1asm′
1

env2
asm2

conds

env2asm′
2

Figure 13. A tree corresponding to the condition tables
extension in Figure 12. trans and errors is computed on the
TRows nodes on the left, while env and asm are computed on
the decorated form of trans on the right.

As seen previously with neg in Figure 10, we would like to
decorate these host-language Exprs with inherited attributes
supplied through their translation. However, consRow is not
a forwarding production since its left-hand side is not a host
language nonterminal. If trans were an ordinary higher-
order attribute, we would construct an undecorated transla-
tion term and decorate it in the forward of condTable. This

would then decorate the condition expressions in the table
rows again, thus returning to the situation in Figure 2.
Instead, we would like to create the pattern seen in Fig-

ure 13. Here we first construct the translation of the table
rows into let-expressions, and decorate it as the forward of
condTable. The environment flows down the forward tree
to the condition expressions, where it is used to compute
errors, which are collected up the original TRows tree.
This can be achieved using translation attributes, which

are synthesized attributes that serve as decoration sites for
terms, similar to locals. Translation attributes are similar
to higher-order attributes in that their equations create un-
decorated terms; the declared type of a translation attribute
must be a nonterminal. However like reference or remote
attributes, they hold decorated trees and may be supplied
with inherited equations. On line 4 of Figure 12, accessing
rows.trans gives back a Decorated Expr. On line 10, consRow
can access e.errors, which depends on e.env, using the env
supplied through the equation for rs.trans.
Synthesized and inherited attributes occurring on Expr

may be treated like additional synthesized and inherited
attributes occurring on TRows; for example, the consRow pro-
duction uses rs.trans.env to compute eVar, which must
have been supplied to rs.trans by the parent of this produc-
tion. We can again use the @ tree-sharing operator to indicate
that the tree constructed by a translation attribute should be
shared with (and receive inherited attributes from) another
decorated tree. In condTable, the env supplied to rows.trans

(through the use of @ and forwarding here; once could also
write rows.trans.env = e.env;) flows down through the
Expr tree built by rows.trans. Thus in consRow one can ac-
cess e.errors, which depends on e.env, using the env sup-
plied through the equation for rs.trans on line 16.

Demand-driven evaluation creates complications for trans-
lation attributes, like was seen with sharing children in Sec-
tion 3.1. Any use of a tree shared in a translation attribute
equation must demand the decoration of the tree constructed
by the attribute, which may involve recursively demanding
the decoration of the translation attribute from further up
the extension tree. For example, accessing errors from 𝑒2 in
Figure 13 must ultimately demand the forward tree from its
root decoration site in the forward of condTable. To achieve
this, the implementation involves another implicit inherited
reference attribute to pass corresponding portions of the
translation tree down from its root decoration site.

4 Evaluation

We evaluated the utility of this new approach to forwarding
in the ableC [11] host language specification of C. There
are many different extensions to ableC [10, 11, 17] and we
evaluated 10 non-trivial extensions that are representative
of the other ableC language extensions. The full list of ex-
tensions and detailed results of the evaluation can be found

63



Sharing Trees and Contextual Information: Re-imagining Forwarding in Attribute Grammars SLE ’23, October 23–24, 2023, Cascais, Portugal

in Appendix A. Overall, 94% of uses of decorated wrapper
productions like decExpr in Figure 7 could be replaced by
the tree sharing operator, and those that could not were not
needed to avoid exponential decoration. These changes allow
the removal of many complex and now-unneeded inherited
attribute equations, making the extension specifications sig-
nificantly easier to understand and maintain.

All unary and binary operators in ableC, as well as some
expressions like function call and array index, support oper-
ator overloading. Each operator has a production that for-
ward based on the types of the children; these explicitly
supply inherited attributes and wrap the decorated children
in decExpr, similar to neg in Figure 9. In total, decExpr is
used 168 times in the ableC specification; all of these uses
could be replaced with uses of the tree sharing operator.
Across the 10 considered ableC extensions, there are 74

instance of decorated wrapper productions. Of these, 39
appear in a statically-determined forward tree, where the
tree-sharing operator can be used to avoid some inherited
equations, and 5 appeared in a dynamically-forwarding pro-
duction similar to overloading, where inherited equations
are still needed. In 30 cases, wrapper productions were used
in a translation passed as an attribute to be decorated else-
where. Of these, 15 could be easily replaced using translation
attributes.

The ableC-Prolog extension uses a combination of multi-
ple higher-order synthesized and inherited attributes for con-
structing a translation, where some host language children
may appear in the trees constructed by more than one at-
tribute. This pattern is not amenable to translation attributes;
thus there are are 15 uses of decorated wrapper productions
in the Prolog extension which could not easily be replaced.
However, the constructs introduced in this extension are not
typically nested, and thus would not suffer from exponential
recomputation if these subtrees were decorated twice.

In some ableC extensions, e.g. condition tables, we found
instances of tree re-decoration that had not been addressed
with wrapper productions. We have not yet attempted to
identify all instances of trees being re-decorated that could
potentially be addressed with tree sharing. This is because
these specifications were developed with a prior version of
Silver, with the problematic implicit undecoration seman-
tics that we mentioned in Section 3.1. Changing the type
rules to require explicit undecoration or sharing creates an
error flagging every potential place where a tree could be re-
decorated; however this constitutes a major breaking change
to all existing Silver code, and we had not yet completed
this change as of performing this evaluation.
For this reason we have not attempted a comprehensive

refactoring of ableC and its extensions to use the new shar-
ing mechanisms, or quantified the number of unaddressed re-
decoration issues. Instead, we refactored 3 ableC extensions
to use the new sharing mechanisms: closures, condition-
tables, and algebraic datatypes. In all cases this led to simpler

code and the removal of inherited attributes and equations.
In the datatypes extension, the use of translation attributes
to translate pattern matching saved 36 lines of specification
(out of a total of 900.)

The tree-sharing operator provides a small optimization
over the old approach of wrapper productions, as the new
approach does not require introducing an extra node in the
decorated tree, as seen in Figure 7 vs Figure 4. The perfor-
mance was evaluated by comparing the runtime of building
the examples for the closure and datatype extensions be-
fore and after refactoring; the refactored versions yielded a
roughly 4% speedup. We did not attempt to compare the per-
formance of specifications with exponential re-decoration
behavior to ones in which sharing is used, as prior to refac-
toring these were clearly unusable for nontrivial programs.
Overall, tree sharing has proven to be a very beneficial

technique, with significant improvements in code quality,
and avoiding excessive recomputation of analyses without
limiting extensibility.

5 Modular Well-Definedness

Kaminski andVanWyk [12] proposed amodularwell-defined-
ness analysis for attribute grammars with forwarding, to
ensure that all potentially needed attribute equations are
present in compositions of independently-designed language
extensions. This analysis is based around the idea of con-
structing flow graphs for productions, as in Knuth’s original
analyses [15]. Flow types are inferred for every occurrence of
a synthesized attribute on a nonterminal, consisting of the
set of inherited attribute dependencies. Attribute equations
are checked against the production flow graphs and flow
types, ensuring that all needed equations are supplied.

The data structures and algorithms used in Kaminski and
Van Wyk [12]’s analysis, used in Silver, must be slightly
extended to accommodate the new features proposed here.
While space limits preclude a full presentation of the ex-
tended analyses here, we present the issues at hand and give
some intuition about the required changes below.

5.1 Avoiding duplicate equations

Since we are adding the ability to supply inherited equations
to the same tree from multiple sites, we must avoid there
being multiple equations for the same attribute when some
precedence between them cannot be determined. First, the
operand to the @ tree-sharing operator must correspond to a
decoration sitewhere inherited attribute equations could ordi-
narily be specified, i.e. a nonterminal child, local, or instance
of a translation attribute on a child or local.
If an explicit inherited equation is given to a child in a

forwarding production, in addition to an equation through
a production in the forward tree, then the explicit equation

64



SLE ’23, October 23–24, 2023, Cascais, Portugal Kramer and Van Wyk

takes precedence. This is analogous to the explicit synthe-
sized equations on the forwarding production taking prece-
dence over those in the tree forwarded-to. We must also
ensure that if a child is shared, it only appears in one place,
to avoid multiple competing equations. This means that a
shared child can only appear in the original production, and
not in independently-introduced aspect productions. Simi-
larly, a local tree can only be shared once and in the same
module as the local, and a translation attribute instance can
only be shared once per production in the same module as
the attribute occurrence. It is permitted for the same tree to
be shared in multiple mutually exclusive positions, such as
separate branches of a pattern match as seen in Figure 9.

The expression in which a shared child appears also must
not decorate the term containing the child more than once,
for example a shared tree cannot appear in an arbitrary
higher-order attribute equation, which may be arbitrarily
used and re-decorated elsewhere. The tree-sharing operator
must only appear in unique contexts, which can be a forward
equation, local equation, translation attribute equation, or
as an operand to a production call or conditional expression
in a unique context. This is enforced by a straightforward
syntactic analysis, termed the uniqueness analysis.
A more subtle issue exists if a production in the forward

equation were to un-decorate and re-decorate its own child,
perhaps intentionally to perform an analysis in a different
environment. The behavior of calling new on a tree in Silver
is to simply return the original term that was decorated to
create the tree. If the term provided to this production con-
tains a wrapped child from use of the tree-sharing operator,
this may result in the child being decorated twice.

Instead, we change the semantics of un-decoration in Sil-
ver to perform a deep-copy of the term that was decorated,
such that calling new on a decorated tree never returns a
term containing a wrapped tree. Thus in the above scenario,
the un-decorated and re-decorated tree does not share any
subtrees. As an optimization, all constructed terms track
whether they contain a wrapped tree, such that the deep
copy operation only needs to happen down to the level of
any wrapped subtrees.

5.2 Enforcing effective inherited completeness

Recall the intuition given in Section 3.2 for the runtime se-
mantics of tree sharing in terms of pattern matching. The
treatment of the tree-sharing operator in the modular well-
definedness analysis is also similar to pattern matching, as
discussed fully in previous work [9]. A new sort of flow ver-
tex is introduced corresponding to unconditionally-decorated
sub-terms of a forward or local equation. The existing analy-
sis has a notion of flow projection stitch points, used to update
a production’s flow graph with edges corresponding to in-
herited equations from productions referenced in patterns.
Flow projection stitch points are also used here, to add edges
for inherited equations between sub-term vertices.

A synthesized attribute may now depend on an inherited
attribute being supplied to a translation attribute on a tree.
Thus, flow types are extended to include inherited attributes
occurring on translation attributes on a nonterminal, in ad-
dition to inherited attributes occurring on a nonterminal.

For inherited attribute equations to be reliably supplied to
a child through forwarding, the requirements for the term in
which the child appears are somewhat stricter than imposed
by the uniqueness analysis. The child must be decorated
unconditionally, meaning that it cannot appear under any
conditional expressions. For example as seen in Figure 9, n
can be shared in the forward tree, but we cannot rely on any
inherited equations supplied through forwarding.

The checks performed on equations using the inferred flow
types and production flow graphs are essentially unchanged,
except that we do not check for the presence of inherited
equations within a production for a shared, unconditionally
decorated child or local. There is an additional check required
for inherited override equations on children or locals that are
shared, even conditionally: the dependencies of the override
equation must not exceed the dependencies of the remote
equation. This is because the production constructed with
the shared child will be checked with the flow graph created
from the inherited equations that it supplies; if we override
this equation with one that has additional dependencies, this
may lead to additional transitive dependencies that were not
checked, and potentially missing equations.

5.3 Limited feasibility of circularity analyses

Kaminski and VanWyk [12]’s modular well-definedness anal-
ysis does not include a non-circularity check. This is because
in practice, strict non-circularity between attributes is overly
conservative; laziness means that cycles often are not present
in the actual evaluation even when a strict analysis could
not prove their absence. Furthermore circularity between
portions of trees is often useful, such as in building the envi-
ronment for mutually recursive bindings. For these reasons,
attribute grammar systems such as Silver, JastAdd [4] and
Kiama [21] dispense with a non-circularity analysis.

Circularities between different portions of trees have proven
especially useful with tree sharing, as seen in Figure 10. We
have found that this pattern does frequently give rise to
actual cycles, between an inherited attribute on a shared
child and a dynamic portion of the forward tree that may
affect the child’s attribute. Since we don’t have an analysis
capable of detecting these problems, these issues are typi-
cally found through crashes when developing an extension;
however we have found them to be easy to diagnose and re-
solve by adding explicit inherited equations. These problems
also typically do not appear from composing independent
extensions, because the problematic dependencies involve
productions explicitly specified in the forward tree. While a
more sophisticated analysis could be useful for finding these
issues, it is unclear if such an analysis is feasible.

65



Sharing Trees and Contextual Information: Re-imagining Forwarding in Attribute Grammars SLE ’23, October 23–24, 2023, Cascais, Portugal

6 Discussion

This section provides a discussion of tree sharing and the
computation of inherited attributes through forwarding, and
how this work relates to other aspects of Silver.

6.1 Specializing inherited attribute equations

A nice feature of forwarding is the freedom to specialize syn-
thesized attributes to the new language construct by writing
explicit equations for them. This allows one to report error
messages specific to the new feature or define the type at-
tribute on a new expression, e.g. of a extension introducing
list literals may define its type to be a list type. In Section 3.3
we saw an example of needing to write explicit inherited
equations to break circularities with the closure extension.
These equations always had the same value as what would
later be computable in the forward tree. Are cases when
we want to specialize an inherited attribute with a different
value, as seen with errors? We expected the new ability to
specialize inherited attributes to be similarly helpful, but
their actual benefit was something else. Contextual informa-
tion, e.g. an environment mapping names to types, is some
data structure containing terms for host language nontermi-
nals, such as a Type nonterminal defining structured types.
Thus new extension types, e.g. list types, naturally arise in
the name bindings. It turns out there is not much need to spe-
cialize an environment, or similar inherited attributes, on the
forwarding production. More frequently, we find one writes
these explicit equations to break cycles in extensions with
sophisticated patterns of forwarding. Since these equations
are not so often intended to specialize inherited attribute
values, it is also easier to ensure that the values given are
compatible with those provided on the forwarded-to tree.

6.2 Why autocopy is a misfeature

Past versions of Silver and earlier presentations of forward-
ing [25, 26] featured autocopy attributes, a form of inherited
attributes that were implicitly copied down the tree to chil-
dren. This is convenient for attributes such as an environ-
ment that generally flow down the tree. However autocopy
attributes are incompatible with the new approach to tree
sharing, as we often want an environment to be supplied
through forwarding, and autocopy would supply an unde-
sired implicit copy equation for the child.

In fact, we had already recognized autocopy as a source of
bugs due to undesired equations: in developing attribute
grammar specifications, we sometimes use a “flow-type-
driven development” approach, adding needed equations
as they are flagged by the well-definedness analysis. Auto-
copy attributes suppress these errors by introducing implicit
(and often incorrect) equations. For these reasons we have
removed support for autocopy, and replaced it with a mech-
anism to specify where copy equations should be generated
for an inherited attribute.

1 production forLoop s::Stmt ::=

2 iVar::String lower::Expr upper::Expr body::Stmt

3 { local localErrors::[Message] =

4 checkInt(lower.type, "lower bound") ++

5 checkInt(upper.type, "upper bound") ++

6 lower.errors ++ upper.errors ++ body.errors;

7 local upperVar::String = freshName(s.env);

8 forward fwrd = block(seq(

9 decl(iVar, intType(), @lower),

10 seq(decl(upperVar, intType(), @upper),

11 while(intLt(var(iVar), var(upperVar)),

12 seq(@body, assign(iVar,

13 intAdd(var(iVar), intConst(1))))))));

14 forwards to if null(localErrors) then @fwrd

15 else errorStmt(localErrors); }

Figure 14. An alternative version of Figure 8 using an error
production instead of overriding the equation for errors.
A forward production attribute is used to unconditionally
decorate the translation when forwarding conditionally.

6.3 Forward production attributes

Overriding attributes on forwarding productions with val-
ues differing from those on the forward tree can lead to
unexpected behavior when composing independent exten-
sions, a problem known as interference [13]. To avoid this,
error productions are included in host language specifications
such as ableC, which can optionally be forwarded to instead
of writing an override equation. However, this pattern is
incompatible with computing inherited attributes through
forwarding, as the forward tree may not always be decorated.

An alternative is to use a local forward production attribute,
as seen on line 8 of Figure 14. This allows one to specify
one forward tree for unconditionally supplying context, but
potentially forward synthesized attributes to a different tree.
We identified 49 places in the 10 ableC extensions evaluated
in Section 4 where this feature would be useful.

7 Related Work

7.1 Attribute grammars

We added tree and contextual-information sharing to the
Silver [25] attribute grammar system because the notion
of forwarding makes the problem of sharing an interesting
one. But there are other well-used AG systems that could
have been used. Kiama [21] is a Scala library that also has
a notion of forwarding. Similarly, JastAdd [3] has a notion
of tree-rewriting [23] that is integrated into its use of ref-
erence [19] and circular [6] attributes. This may also be an
interesting candidate for tree sharing to save re-computation
of attributes. Silver has strategy attributes [18] that allow

66



SLE ’23, October 23–24, 2023, Cascais, Portugal Kramer and Van Wyk

one to write Stratego-style strategies to control the ap-
plication or rewrite-rules [28]. The tree-sharing discussed
here may be applicable in single-pass, bottom-up traversals
since these are similar to what happens with translation at-
tributes (Section 3.4). But it is not clear how well sharing can
be incorporated into the more sophisticated strategies, and
their ensuring traversal patterns, since it is unclear how one
maintains the uniqueness requirements of the tree-sharing
operator. This is certainly an area worth further study.

7.2 Tree sharing

The sharing of trees is a common practice in programming
language tools. One influential example is the ATerm (An-
notated Terms) system [24] for automatically sharing the
representation of trees; it provides maximal sharing. Tree
construction specifications will reuse existing trees if they
already exist in the current collection of syntax trees. Kiama
also provides an interesting notion of tree sharing in which
the same tree can be decorated with two different values for
the same set of attributes, an approach termed "respecting
your parents" [22]. Here, the attribute values are stored sep-
arately from the tree in (unshared) attributions; they consist
of a map from unique identifiers of tree nodes to attribute
values. This is similar to Silver’s distinguishing terms and
decorated trees. In these works the aim of sharing is to rep-
resent trees more efficiently, and not to reuse or simplify the
specification of computations.

Intentional Programming [20] is the most closely related
work to our since forwarding was originally implemented
in that system. It showed how extensions could specialize
synthesized attributes, there called questions. But it automat-
ically shared sub-trees under the forwarding and forwarded-
to trees [27] and did not allow the specialization of inherited
attributes, thus denying the language engineer the freedom
to make these choices.

7.3 Attribute grammar flow analysis

Silver focuses on independent extensions so that a program-
mer can pick the ones they desire for their task at hand. Thus
the modular well-definedness analysis [12] is used to ensure
that the composition of these extensions will, in fact, work
since the programmer is not in a position to debug or modify
extension specifications; thus the extensions to this work
in Section 5. Most related to our extensions is Boyland’s
analyses on remote attribute grammars [1]. That work anal-
yses remote attributes and uses a notion of fibers to track
dependencies not only on a remote node in the syntax tree
but also the attributes that decorate it. This is similar to our
extension of flow-types for synthesized attributes to also
include the inherited attributes on a translation attribute on
which it depends. Boyland’s analysis was not a modular one
and thus not directly applicable in our setting.

8 Future Work and Conclusion

8.1 Utilizing context supplied before forwarding

There are still some shortcomings with the approach to op-
erator overloading in ableC proposed in Section 4. Every
overloaded operator has both a forwarding production, and
a non-forwarding default implementation production that is
typically only ever constructed by its overloaded counterpart.
Both productions must specify all the inherited equations
needed for type checking, however with sharing, the equa-
tions on the non-forwarding production are never used.
To avoid specifying these equations multiple times, a so-

lution is to identify productions like intNeg or boolNeg as
dispatch implementations that can only be constructed as
the forwarded-to tree of some specific dispatching produc-
tion(s) like neg. The flow analysis from Section 5.2 can then
be extended to consider any equations in the forwarding
production as being supplied to the corresponding children
in the implementation.

8.2 Data nonterminals

Sometimes nonterminals are used to represent data struc-
tures, such as optional values of type Maybe or an environ-
ment, that are never decorated with inherited attributes.
Always automatically decorating children and locals of these
types is inefficient and requires extra calls to new; instead we
would like to mark them as data nonterminals that are never
Decorated.

8.3 In conclusion

This paper introduces a new operator @, that permits tree-
sharing without limiting extensibility. This allows language
engineers to control when trees, and the specification of
their contextual information, are to be shared or not. The ex-
amples given in Section 3 and the results of the evaluation in
ableC indicate that tree sharing is the more common choice.
But there are cases, especially when extensions are unlikely
to be nested, when duplicating the tree is the right choice.
This occurs in the ableC-Prolog extension discussed above,
where host-language expressions appear in relations (e.g.
in a numeric comparison goal), as well as in their transla-
tion. Since the generated code is complex, knowing e.g. what
contextual information for a live-variable analysis is to be
provided to expressions in a forwarding Prolog construct
would be very difficult indeed. Here the right choice is to
not share the child trees. Thus, it is important that language
engineers have the freedom to make the appropriate choice,
to share or not, and the new tree-sharing operator @ provides
that flexibility.

Acknowledgments

This work is partially supported by the National Science
Foundation (NSF) under Grant Nos. 2123987.

67



Sharing Trees and Contextual Information: Re-imagining Forwarding in Attribute Grammars SLE ’23, October 23–24, 2023, Cascais, Portugal

Table 1. Information about the ableC extensions evaluated for the potential use of tree sharing.

Extension name Description Static Dynamic

Translation

attributes

Non-

sharable

Forward prod

attributes

condition-
tables

Concise syntax for boolean expressions 7 1

closure Lambda functions that capture scoped vari-
ables

2 5

algebraic-
data-types

Algebraic data types implemented as
tagged unions, with pattern matching

3 6 3

templating C++-inspired templated function and type
declarations

2 3

string More efficient string representation type,
overloadable operators for stringifying and
pretty-printing various types

13 9

vector Array-backed list data structure, with over-
loads for +, ==, and other operators

14

constructor Syntax for constructing and deconstructing
values, overloadable by other extensions
such as vector

1 1 5

unification Unification variable reference type and
overloaded unify operator

5 3 3

prolog Prolog-inspired logic programming rela-
tions and queries

4 6 15 3

rewriting Stratego-inspired strategic term rewriting 7 4

Total 74 potential instances of sharing 39 5 15 15 49

A Evaluation of ableC extensions

Table 1 provides further details on the evaluation of opportu-
nities for tree sharing in 10 representative ableC extensions.
For each extension, from left to right is given

• The number of instances where tree sharing could
be used in a statically-determined forward tree, sup-
plying context and avoiding some explicit inherited
equations;

• The number of instances where tree sharing could be
used in a dynamic forward tree, where explicit inher-
ited equations are still needed;

• The number of instances where tree sharing could be
used in a translation attribute equation;

• The number of uses of decExpr-style wrapper produc-
tions that could not be replaced with the new tree
sharing mechanisms, due to appearing in a non-unique
context such as a higher-order inherited attribute equa-
tion;

• The number of productions in the grammar that would
require a forward production attribute to enable static
tree sharing.

The updated sources of these extensions can be found at
https://github.com/melt-umn/ableC-<extension-name>; the
versions evaluated here are archived at https://doi.org/10.
13020/badh-qf44.

68

https://github.com/melt-umn/ableC-condition-tables
https://github.com/melt-umn/ableC-condition-tables
https://github.com/melt-umn/ableC-closure
https://github.com/melt-umn/ableC-algebraic-data-types
https://github.com/melt-umn/ableC-algebraic-data-types
https://github.com/melt-umn/ableC-templating
https://github.com/melt-umn/ableC-string
https://github.com/melt-umn/ableC-vector
https://github.com/melt-umn/ableC-constructor
https://github.com/melt-umn/ableC-unification
https://github.com/melt-umn/ableC-prolog
https://github.com/melt-umn/ableC-rewriting
https://github.com/melt-umn/ableC-
https://doi.org/10.13020/badh-qf44
https://doi.org/10.13020/badh-qf44


SLE ’23, October 23–24, 2023, Cascais, Portugal Kramer and Van Wyk

References

[1] John Tang Boyland. 2005. Remote attribute grammars. J. ACM 52, 4
(2005), 627–687. https://doi.org/10.1145/1082036.1082042

[2] Russel Cox, Tom Bergany, Austin Clements, Frans Kaashoek, and Eddie
Kohlery. 2008. Xoc, an Extension-Oriented Compiler for Systems
Programming. In Proceedings of Architectural Support for Programming
Languages and Operating Systems (ASPLOS). 244–254. https://doi.org/
10.1145/1353534.1346312

[3] Torbjörn Ekman and Görel Hedin. 2007. The JastAdd extensible Java
compiler. In Proceedings of the 22nd annual ACM SIGPLAN Conference
on Object Oriented Programming Systems and Applications (OOPSLA).
ACM, 1–18. https://doi.org/10.1145/1297027.1297029

[4] Torbjörn Ekman and Görel Hedin. 2007. The JastAdd system - modular
extensible compiler construction. Science of Computer Programming
69 (December 2007), 14–26. Issue 1-3. https://doi.org/10.1016/j.scico.
2007.02.003

[5] Sebastian Erdweg, Tillmann Rendel, Christian Kastner, and Klaus Os-
termann. 2011. SugarJ: Library-based Syntactic Language Extensi-
bility. In Proceedings of the Conference on Object Oriented Program-
ming, Systems, Languages, and Systems (OOPSLA). ACM, 391–406.
https://doi.org/10.1145/2048066.2048099

[6] R. Farrow. 1986. Automatic Generation of Fixed-Point-Finding Eval-
uators for Circular, but Well-Defined, Attribute Grammars. ACM
SIGPLAN Notices 21, 7 (1986). https://doi.org/10.1145/13310.13320

[7] Görel Hedin. 2000. Reference Attribute Grammars. Informatica 24, 3
(2000), 301–317.

[8] T. Johnsson. 1987. Attribute grammars as a functional programming
paradigm. In Proc. of Functional Programming Languages and Computer
Architecture (Lecture Notes in Computer Science, Vol. 274). Springer-
Verlag, 154–173. https://doi.org/10.1007/3-540-18317-5_10

[9] Ted Kaminski. 2017. Reliably Composable Language Extensions. Ph. D.
Dissertation. University of Minnesota, Minneapolis, Minnesota, USA.
http://hdl.handle.net/11299/188954

[10] Ted Kaminski, Lucas Kramer, Travis Carlson, and Eric Van Wyk. 2017.
Reliable and automatic composition of language extensions to C — Sup-
plemental Material. Technical Report 17-009. University of Minnesota,
Department of Computer Science and Engineering. Available at
https://hdl.handle.net/11299/216011.

[11] Ted Kaminski, Lucas Kramer, Travis Carlson, and Eric Van Wyk. 2017.
Reliable and Automatic Composition of Language Extensions to C:
The ableC Extensible Language Framework. Proceedings of the ACM on
Programming Languages 1, OOPSLA, Article 98 (Oct. 2017), 29 pages.
https://doi.org/10.1145/3138224

[12] Ted Kaminski and Eric Van Wyk. 2012. Modular well-definedness
analysis for attribute grammars. In Proceedings of the 5th International
Conference on Software Language Engineering (SLE) (Lecture Notes in
Computer Science, Vol. 7745). Springer, 352–371. https://doi.org/10.
1007/978-3-642-36089-3_20

[13] Ted Kaminski and Eric Van Wyk. 2017. Ensuring Non-interference
of Composable Language Extensions. In Proceedings of the 10th ACM
SIGPLAN International Conference on Software Language Engineering
(SLE) (Vancouver, Canada). ACM, 163–174. https://doi.org/10.1145/
3136014.3136023

[14] Uwe Kastens. 1980. Ordered attributed grammars. Acta Informatica
13 (1980), 229–256. Issue 3. https://doi.org/10.1007/BF00288644

[15] Donald E. Knuth. 1968. Semantics of Context-free Languages. Mathe-
matical Systems Theory 2, 2 (1968), 127–145. https://doi.org/10.1007/
BF01692511 Corrections in 5(1971) pp. 95–96.

[16] Donald E. Knuth. 1971. Semantics of Context-free Languages: Cor-
rection. Mathematical Systems Theory 5, 2 (1971), 95–96. https:

//doi.org/10.1007/BF01702865 Corrections to [15].
[17] Lucas Kramer and Eric Van Wyk. 2019. Parallel Nondeterminis-

tic Programming as a Language Extension to C (Short Paper). In
Proceedings of the International Conference on Generative Program-
ming: Concepts & Experience (GPCE) (Athens, Greece). ACM, 20–26.
https://doi.org/10.1145/3357765.3359524

[18] Lucas Kramer and Eric Van Wyk. 2020. Strategic Tree Rewriting in
Attribute Grammars. In Proceedings of the ACM SIGPLAN International
Conference on Software Language Engineering (SLE) (Virtual, USA).
210–229. https://doi.org/10.1145/3426425.3426943

[19] Eva Magnusson and Görel Hedin. 2007. Circular reference attributed
grammars - their evaluation and applications. Science of Computer
Programming 68, 1 (2007), 21–37. https://doi.org/10.1016/j.scico.2005.
06.005

[20] Charles Simonyi, Magnus Christerson, and Shane Clifford. 2006. In-
tentional software. SIGPLAN Notices 41, 10 (2006), 451–464. https:
//doi.org/10.1145/1167515.1167511

[21] Anthony M. Sloane. 2011. Lightweight language processing in Kiama.
In Proceedings of the 3rd summer school on Generative and Transfor-
mational Techniques in Software Engineering III (GTTSE ’09) (Braga,
Portugal) (Lecture Notes in Computer Science, Vol. 6491). Springer, 408–
425. https://doi.org/10.1007/978-3-642-18023-1_12

[22] Anthony M. Sloane, Matthew Roberts, and Leonard G. C. Hamey. 2014.
Respect Your Parents: How Attribution and Rewriting Can Get Along.
In Software Language Engineering (Lecture Notes in Computer Science,
Vol. 8706), Benoît Combemale, David J. Pearce, Olivier Barais, and
Jurgen J. Vinju (Eds.). Springer, 191–210. https://doi.org/10.1007/978-
3-319-11245-9_11

[23] Emma Söderberg andGörel Hedin. 2015. Declarative rewriting through
circular nonterminal attributes. Computer Languages, Systems & Struc-
tures 44 (2015), 3 – 23. https://doi.org/10.1016/j.cl.2015.08.008

[24] Mark G.J. van den Brand and Paul Klint. 2007. ATerms formanipulation
and exchange of structured data: It’s all about sharing. Information
and Software Technology 49, 1 (2007), 55–64. https://doi.org/10.1016/j.
infsof.2006.08.009

[25] Eric Van Wyk, Derek Bodin, Jimin Gao, and Lijesh Krishnan. 2010.
Silver: an Extensible Attribute Grammar System. Science of Computer
Programming 75, 1–2 (January 2010), 39–54. https://doi.org/10.1016/j.
scico.2009.07.004

[26] Eric VanWyk, Oege de Moor, Kevin Backhouse, and Paul Kwiatkowski.
2002. Forwarding in Attribute Grammars for Modular Language De-
sign. In Proceedings of the 11th Conference on Compiler Construction
(CC) (Lecture Notes in Computer Science, Vol. 2304). Springer-Verlag,
128–142. https://doi.org/10.1007/3-540-45937-5_11

[27] E. Van Wyk, O. de Moor, G. Sittampalam, I. Sanabria-Piretti, K. Back-
house, and P. Kwiatkowski. 2001. Intentional Programming: a Host
of Language Features. Technical Report PRG-RR-01-21. Computing
Laboratory, University of Oxford.

[28] Eelco Visser. 2001. Stratego: A Language for Program Transformation
based on Rewriting Strategies. System Description of Stratego 0.5.
In Rewriting Techniques and Applications (RTA’01) (Lecture Notes in
Computer Science, Vol. 2051), A. Middeldorp (Ed.). Springer-Verlag,
357–361. https://doi.org/10.1007/3-540-45127-7_27

[29] Harold H. Vogt, S. Doaitse Swierstra, and Matthijs F. Kuiper. 1989.
Higher Order Attribute Grammars. In Proceedings of the ACM SIG-
PLAN Conference on Programming Language Design and Implementa-
tion (PLDI). ACM, 131–145. https://doi.org/10.1145/73141.74830

Received 2023-07-07; accepted 2023-09-01

69

https://doi.org/10.1145/1082036.1082042
https://doi.org/10.1145/1353534.1346312
https://doi.org/10.1145/1353534.1346312
https://doi.org/10.1145/1297027.1297029
https://doi.org/10.1016/j.scico.2007.02.003
https://doi.org/10.1016/j.scico.2007.02.003
https://doi.org/10.1145/2048066.2048099
https://doi.org/10.1145/13310.13320
https://doi.org/10.1007/3-540-18317-5_10
http://hdl.handle.net/11299/188954
https://hdl.handle.net/11299/216011
https://doi.org/10.1145/3138224
https://doi.org/10.1007/978-3-642-36089-3_20
https://doi.org/10.1007/978-3-642-36089-3_20
https://doi.org/10.1145/3136014.3136023
https://doi.org/10.1145/3136014.3136023
https://doi.org/10.1007/BF00288644
https://doi.org/10.1007/BF01692511
https://doi.org/10.1007/BF01692511
https://doi.org/10.1007/BF01702865
https://doi.org/10.1007/BF01702865
https://doi.org/10.1145/3357765.3359524
https://doi.org/10.1145/3426425.3426943
https://doi.org/10.1016/j.scico.2005.06.005
https://doi.org/10.1016/j.scico.2005.06.005
https://doi.org/10.1145/1167515.1167511
https://doi.org/10.1145/1167515.1167511
https://doi.org/10.1007/978-3-642-18023-1_12
https://doi.org/10.1007/978-3-319-11245-9_11
https://doi.org/10.1007/978-3-319-11245-9_11
https://doi.org/10.1016/j.cl.2015.08.008
https://doi.org/10.1016/j.infsof.2006.08.009
https://doi.org/10.1016/j.infsof.2006.08.009
https://doi.org/10.1016/j.scico.2009.07.004
https://doi.org/10.1016/j.scico.2009.07.004
https://doi.org/10.1007/3-540-45937-5_11
https://doi.org/10.1007/3-540-45127-7_27
https://doi.org/10.1145/73141.74830

	Abstract
	1 Introduction
	2 Background
	2.1 Attribute grammars and Silver
	2.2 Forwarding and extensible languages
	2.3 Limitations of forwarding

	3 Forwarding with Tree Sharing
	3.1 Sharing with a static forward tree
	3.2 Dynamic forwarding
	3.3 Partially dynamic forwarding
	3.4 Computing a forward over multiple productions

	4 Evaluation
	5 Modular Well-Definedness
	5.1 Avoiding duplicate equations
	5.2 Enforcing effective inherited completeness
	5.3 Limited feasibility of circularity analyses

	6 Discussion
	6.1 Specializing inherited attribute equations
	6.2 Why autocopy is a misfeature
	6.3 Forward production attributes

	7 Related Work
	7.1 Attribute grammars
	7.2 Tree sharing
	7.3 Attribute grammar flow analysis

	8 Future Work and Conclusion
	8.1 Utilizing context supplied before forwarding
	8.2 Data nonterminals
	8.3 In conclusion

	Acknowledgments
	A Evaluation of ableC extensions
	References

